Microplastics in water and sediments of the Vistula River in the Warsaw area

Dr Ilona Sekudewicz

i.sekudewicz@twarda.pan.pl

Institute of Geological Sciences Polish Academy of Sciences

Earth and Planetary Research Centre

What are microplastics?

Different authors' stated definitions of plastics based on size (Prapanchan et al., 2023)

Prapanchan et al., 2023

Microplastics (MPs) are usually defined as plastics with a size smaller than 5 mm (e.g., Arthur et al., 2009; Cole et al., 2011; Hidalgo-Ruz et al., 2012).

> **Primary MPs** (Manufactured plastic pieces 5 mm or less in size)

Classification by source

> Secondary MPs (Formed when large plastics break down into pieces smaller than 5 mm)

Where did the idea come from?

Microplastics in the Baltic Sea

Preparation of sediment samples at Tallinn University of Technology

Collection of microplastics from surface water using a manta trawl

Fot. Ilona Sekudewicz

Aim of the study

The present study aimed to investigate **microplastic pollution** in the highly urbanized and industrialized **section of the Vistula River** in Poland.

We hypothesized that the highest microplastic contamination would occur in the Warsaw city centre.

To test this hypothesis, water and sediment samples were collected from:

The second se

 a less populated area (near to Wilanow Zawady Beach),
 a site near the tributary outlet and wastewater treatment plant (WWTP ,South'),
 a sampling point (Beach by the Poniatowski Bridge) close to the city centre.

Study area (Sekudewicz et al., 2021)

https://stronapodrozy.pl

Beach by the Poniatowski bridge

Samples collection and preparation

Results

Fot. Ilona Sekudewicz

MP particles were detected directly on the filters under a stereomicroscope (Delta Optical SZ-630B) with Delta Optical DLT-Cam Viewer software

Fot. Ilona Sekudewicz

The concentrations of MPs in the **water** ranged from **1.6** items L⁻¹ (site 2) to **2.55** items L⁻¹ (site 3), whereas, in the **sediments**, it ranged from **190** items kg⁻¹ (site 1) to **580** items kg⁻¹ (site 2).

3

2.5

0.5

700

600

100

Abundance (items kg⁻¹ DW)

0

1

1

B

Abundance (items L⁻¹) 1 2 1 A

Composition of different colours (%) of MP particles extracted from water (A) and sediment (B) samples collected from the Vistula River (sampling sites 1–3).

2

2

Sampling sites

3

3

Results

Raman spectroscopy results for the fibres (A and F – sediment; B, C and D – water) and fragment (E – sediment) detected under the microscope and classified as being of polimer origin (due to the

presence of the -CH2 and -CH3

chemical groups).

Author: dr Agnieszka Monika Dąbrowska, University of Warsaw, Faculty of Chemistry

Sekudewicz et al. (2021)

Results

Conclusions:

- > A section of the Vistula River crossing the Warsaw metropolitan area is significantly polluted by MP particles.
- River water samples collected close to the city centre were the most polluted, whereas the highest content of MPs in bed sediments were observed at a site near the tributary outlet and the WWTP 'South'.
- The MPs were characterized by Raman spectroscopy as polystyrene (PS), polypropylene (PP), and a variety of other materials with different levels of deterioration.
- The variation in MP abundance along the selected section of the river was associated with the sedimentological conditions, as confirmed by the grain size analysis of sediments.
- Additional research is essential to gain a deeper understanding of the factors and processes driving the migration and distribution of MPs in river and lake ecosystems.
- Further in-depth studies on MPs, supported by complementary research, are crucial to better understand the role of rivers in transporting MPs to the sea.

References:

1. Tol. Tol. Development of the

- Arthur, C. V., Baker, J., & Bamford, H. A. (2009). Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris. NOAA Technical Memorandum NOS-OR&R-30.
- Bellasi, A., et al. (2021). The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. Science of the Total Environment, 758, 143535.
- Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Mar. Pollut.
 Bull. 62, 2588–2597.
- Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060–3075.
- Prapanchan, V. N., et al. (2021). A global perspective on microplastic occurrence in sediments and water with a special focus on sources, analytical techniques, health risks, and remediation technologies. Environmental Pollution, 265, 114668.
- Sekudewicz, I., Dąbrowska, A.M., Syczewski, M.D., 2021. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total Environ. 762, 143111.

Thank you for your attention!

Institute of Geological Sciences Polish Academy of Sciences

Earth and Planetary Research Centre

GEOPLANET